Locally uniformly rotund points in convex-transitive Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On non-midpoint locally uniformly rotund normability in Banach spaces

We will show that if X is a tree-complete subspace of ∞ , which contains c 0 , then it does not admit any weakly midpoint locally uniformly convex renorming. It follows that such a space has no equivalent Kadec renorming. 1. Introduction. It is known that ∞ has an equivalent strictly convex renorming [2]; however, by a result due to Lindenstrauss, it cannot be equivalently renormed in locally u...

متن کامل

Locally Uniformly Convex Norms in Banach Spaces and Their Duals

It is shown that a Banach space with locally uniformly convex dual admits an equivalent norm that is itself locally uniformly convex.

متن کامل

Uniformly convex Banach spaces are reflexive - constructively

We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...

متن کامل

Uniformly Convex Functions on Banach Spaces

We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.

متن کامل

The Geometry of Convex Transitive Banach Spaces

Throughout this paper, X will denote a Banach space, S ̄S(X ) and B ̄B(X ) will be the unit sphere and the closed unit ball of X, respectively, and ' ̄'(X ) will stand for the group of all surjective linear isometries on X. Unless explicitly stated otherwise, all Banach spaces will be assumed to be real. Nevertheless, by passing to real structures, the results remain true for complex spaces. Recal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2009

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2009.06.039